等比数列的前n项和公式是什么,一起来看看!
问答 •
等比数列的前n项和公式是什么?相信有些同学对这个问题还存有疑惑。下面,就跟小编一起来了解一下吧。
等比数列的前n项和公式
等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。
推导如下:
因为an=a1q^(n-1)
所以Sn=a1+a1*q^1+…+a1*q^(n-1)(1)
qSn=a1*q^1+a1q^2+…+a1*q^n(2)
(1)-(2)注意(1)式的第一项不变。
把(1)式的第二项减去(2)式的第一项。
把(1)式的第三项减去(2)式的第二项。
以此类推,把(1)式的第n项减去(2)式的第n-1项。
(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。
于是得到
(1-q)Sn=a1(1-q^n)
即Sn=a1(1-q^n)/(1-q)。
等差数列的各种公式
等差数列的通项公式为:an=a1+(n-1)d(1)
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均属于正整数.
等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数.
任意两项am,an的关系为:an=am+(n-m)d
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
等差数列的应用
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。
若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。
若为等差数列,且有an=m,am=n.则a(m+n)=0。