抽屉原理教学设计 抽屉原理的六种理解法
大家好,关于抽屉原理教学设计很多朋友都还不太明白,今天小编就来为大家分享关于抽屉原理的六种理解法的知识,希望对各位有所帮助!
什么抽屉理论
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
第一抽屉原理
原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
原理2:把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3:把无数还多件物体放入n个抽屉,则至少有一个抽屉里有无数个物体。
原理1、2、3都是第一抽屉原理的表述[2]。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
抽屉原理的六种理解法
抽屉原理的六种理解方法是,把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
抽屉原理的六种解法
抽屉原理的六种理解方法是,把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
抽屉原理研究目的
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
好了,关于抽屉原理教学设计和抽屉原理的六种理解法的问题到这里结束啦,希望可以解决您的问题哈!