八年级上册数学一次函数 八年级一次函数解题思路十大技巧
大家好,今天来为大家分享八年级上册数学一次函数的一些知识点,和八年级一次函数解题思路十大技巧的问题解析,大家要是都明白,那么可以忽略,如果不太清楚的话可以看看本篇文章,相信很大概率可以解决您的问题,接下来我们就一起来看看吧!
八年级上册数学一次函数k的规律
对于一次函数Y=kx+b,k≠0,K有如下的规律和性质。
当一次函数是增函数的时候,K>0
当一次函数是减函数的时候,K<0
八年级一次函数解题思路十大技巧
1、待定系数法
所谓待定系数法,是指先设待求直线方程或函数表达式,含有待定系数,再根据条件列出方程或方程组,求出待定系数,从而得到所求函数表达式的方法。
2、平移法
一次函数无论是左右平移,还是上下平移,平移前后的两条直线始终保持平行,斜率不变,也即K值不会发生改变。
3、数形结合思想
正比例函数和一次函数的解析式一定要记清楚,而这部分的内容一定要会反映在直角坐标系中,学会通过直角坐标系观察一次函数的k,b。同时能够通过k,b的取值,快速确定函数的图像,确定图像之后,函数的性质就非常的简单了。
4、课前预习
不管是初中还是高中,我们学习法的第一要点都是课前预习。因为提前看一遍要学的内容,如果遇到不会的,那么第二天上课就可以认真听老师来讲,还听不懂就可以直接提问了。这是一个提高学习效率最直接的方法。
5、反复检查
检查自己数学学习成果的同时,也能够做到巩固知识点的作用。从而能更有效更快速地提高数学学习成绩,也能更好的养成自主学习的好习惯。
6、积极“想”的习惯
积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。
7、培养逻辑能力
学生需要能从已知条件得到结论,需要一步步推理得出来,这一点我们大部分中小学教学做得都不好。为了应试并且快速见效,学校让大家对解题方法死记硬背,忽视了背后的逻辑性。而遇到所学的解题技巧没有涵盖的所谓难题,当然就不会做了。
8、多看一些例题
可以在看例题过程中,将头脑中已有概念具体化,使对知识理解更深刻,更透彻,由于老师补充例题十分有限,所以我们还应自己找一些来看,看例题。
八年级一次函数七种解题方法基础
解一次函数最简单的方法是代入法,把已知的两对自变量和应变量的值代入,求得函数关系式.用代入法解一次函数的过程,实际就是解一个二元一次方程组.一次函数的要求就是一次项的系数不为0.
八年级一次函数测试题及答案
一次函数测试题
一、填空题(每小题4分,共20分)
1、若函数是正比例函数,则常数m的值是。
2、已知一次函数y=kx-2,请你补充一个条件,使y随x的增大而减小。
3、从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的函数关系式是。
4、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y(元)与水量x(吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为元/吨;若用水超过5吨,超过部分的水费为元/吨。
5、学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能从6人,如图所示,请你结合这个规律,填写下表:
拼成一行的桌子数1234……n
人数468……
二、选择题(每小题4分,共20分):
6、下列各曲线中不能表示y是x的函数是()。
7、若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是()
A、(0,-2)B、(1.5,0)C、(8,20)D、(0.5,0.5)。
8、函数y=k(x-k)(k<0的图象不经过()
A、第一象限B、第二象限C、第三象限D、第四象限
9、如果直线y=2x+m与两坐标轴围成的三角形面积等于m,则m的值是()
A、±3B、3C、±4D、4
10、如图:OB、AB分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒秒后,甲超过了乙,其中正确的说法是()
A、①②B、②③④
C、②③D、①③④
三、解答题(此大题共50分,第11题6分,第12题8分,第13题10分,第14、15、16题各12分)
11、已知一次函数图象经过(3,5)和(-4,-9)两点,①求此一次函数的解析式;②若点(a,2)在函数图象上,求a的值。
12、画出函数y=2x+6的图象,利用图象:①求方程2x+6=0的解;②求不等式2x+6>0的解;③若-1≤y≤3,求x的取值范围。
13、小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小明9点离开家,15点回家,根据这个图象,请你回答下列问题:①小强到离家最远的地方需几小时?此时离家多远?②何时开始第一次休息?休息时间多长?③小强何时距家21㎞?(写出计算过程)
14、网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网)。此外B种上网方式要加收通信费0.02元/分。
①某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式。②在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
15、某服装厂现有A种布料70米,B种布料52米,现计划用这种布料生产M、N两种型号的时装80套。已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利45元。做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利50元。若设生产N型号的时装套数为x,用这种布料生产这两种型号的时装所获的总利润为y元。①求y与x的函数关系式,并求出自变量x的取值范围;②该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?
16、直线y=kx+6与x轴y轴分别交于点E,F。点E的坐标为(-8,0),点A的坐标为(-6,0)。①求k的值;②若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;③探究:当P运动到什么位置时,△OPA的面积为27/8,并说明理由。
第十一章一次函数测试题
一、相信你一定能填对!(每小题3分,共30分)汤心军070929
1.下列函数中,自变量x的取值范围是x≥2的是()
A.y=B.y=C.y=D.y=?
2.下面哪个点在函数y=x+1的图象上()
A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)
3.下列函数中,y是x的正比例函数的是()
A.y=2x-1B.y=C.y=2x2D.y=-2x+1
4.一次函数y=-5x+3的图象经过的象限是()
A.一、二、三B.二、三、四
C.一、二、四D.一、三、四
5.若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()
A.m>B.m=C.m<D.m=-
6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()
A.k>3B.0<k≤3C.0≤k<3D.0<k<3
7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()
A.y=-x-2B.y=-x-6C.y=-x+10D.y=-x-1
8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的()
9.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()
10.一次函数y=kx+b的图象经过点(2,-1)和(0,3),那么这个一次函数的解析式为()
A.y=-2x+3B.y=-3x+2C.y=3x-2D.y=x-3
二、你能填得又快又对吗?(每小题3分,共30分)
11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_________.
12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.
13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.
14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+2上的点在直线y=3x-2上相应点的上方.
15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.
16.若一次函数y=kx+b交于y轴的负半轴,且y的值随x的增大而减少,则k____0,b______0.(填“>”、“<”或“=”)
17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________.
18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.
19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.
20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.
三、认真解答,一定要细心哟!(共60分)
21.(14分)根据下列条件,确定函数关系式:
(1)y与x成正比,且当x=9时,y=16;
(2)y=kx+b的图象经过点(3,2)和点(-2,1).
如果你还想了解更多这方面的信息,记得收藏关注本站。