八年级下册数学课本,大学的数学书怎么查习题答案
今天给各位分享八年级下册数学课本的知识,其中也会对大学的数学书怎么查习题答案进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
哪种关于数学的绘本好
我家读过的推荐如下:
1、启蒙阶段的绘本:有些从孩子2岁即可开始
《第五个》《七只瞎老鼠》《十朵小云》《切切切》《你一半我一半》《数数看》《十个人快乐大搬家》《100层的房子》《大象的算术》《壶中故事》《奇妙的种子》《兔子的12个大麻烦》等。
记得儿子闺女小时候对《第五个》都痴迷了一阵,让他们选书,总会把《第五个》搬出来,《第五个》简直就是“5以内数的减少”的典范。
“数的减少”是个很重要的概念,对于孩子来说也不是那么容易理解:好好的都还在的东西怎么会少呢?为了让孩子真正明白,还可以玩“5以内数的减少”的游戏——抢椅子(MusicalChairs)游戏。
2、数学启蒙Mathstart
这套书的美国作者是斯图尔特?墨菲,“亲师手册”的主编是台北教育大学数学研究所的钟静教授。这套40本的数学绘本按照“数与计算、量与实测、图形与空间、统计与概率、逻辑与推理”这五大方面去建构幼儿的数学学习基础,并按照难易程度分成5个阶段,特别容易让不同起步的孩子根据这个架构表去购买学习。
数学启蒙的一个特点就是基础的数学概念不怕“罗嗦”,有的重要概念我们会觉得很不起眼的一个数学概念,作者会用一本书来反复的“刺激”孩子。比如属于“图形与空间”主题、Level1中的《小小消防队员》一书,用“纽扣”这个孩子常见的物品,通过有趣的故事,让孩子参与进来对纽扣的形状、大笑、颜色等属性反复进行分类和平分的联系。再如“逻辑与推理”主题、Level1中的《一双袜子》,还是用幼儿熟悉的袜子,通过5次的配对练习,期望孩子能找出相同特征的袜子,建立配对的概念。
这套每本绘本的后面已经附录了阅读建议和拓展活动建议,每个Level8本又专门邀请台湾的资深儿童数学教育教师编撰了内容翔实丰富的“亲师手册”。每本数学绘本都有“赏析导读”板块,帮助成人读者解析绘本中的数学;有“亲子共读数学趣味”板块、生活中学数学,鼓励家长和孩子观察和了解生活中的数学概念。
我家幼儿园阶段当做亲子阅读读了大部分,推荐给朋友,她购买的是原版的,给孩子当英文和数学的启蒙读物也很好。
3、《从小爱数学》
这套共40本,作者是韩国人,儿子上一年级的时候买的,主要是他自己看了,问儿子这书好看不,儿子说好看,特别好玩,而且还能学到知识。直到3年级,看他没事儿还拿出这套翻一翻。闺女是2年级的时候发现这套,自己也捧着一口气读了十来本,有些看的还咯咯乐。这套书的故事性和知识性都比较强。
4、《汉声数学》
这套大名鼎鼎,拓展很广泛,适合小学以上的读起的数学科普绘本,这套书需要家长和孩子一起边读边动手实践,才能更好的吸收。该书配有妈妈指导手册。这套在小学阶段都可以反复读,反复理解。
有什么数学趣史的书籍可以推荐吗
《数学趣史》就是一本很不错的书呀,选介了数学史上一些有趣的故事,用通俗、生动的语言,介绍了一些数学知识产生、发展的背景,以及数学前辈无私奉献的人生事迹。可以帮助我们理解数学思想和方法的来龙去脉,提高学习数学的兴趣,培养和提升我们潜在的自主创新能力。
大学的数学书怎么查习题答案
以高校作业答案大全为例,步骤如下:
1、直接在微信的搜索窗口中选择对应公众号进入,如下图所示:
2、这个时候需要通过弹出的界面点击图示按钮跳转,如下图所示:
3、下一步继续浏览大学答案那里的答案搜索,如下图所示:
4、如果没问题就根据实际情况确定搜索课后习题,如下图所示:
5、这样一来会找到相关结果即可实现要求了,如下图所示:
数学中,几何这个词是怎么来的为什么叫几何
数学的内容可以粗略地分为代数与几何两大部门。代数是关于数量关系及数量形式的学问,而几何是关于空间形式的学问,最初主要研究空间的度量、形体关系以至形式演绎。在数学教学中,几何与代数具有同等重要的地位。
根据古希腊学者希罗多德的研究,几何学起源于古埃及尼罗河泛滥后为整修土地而产生的测量法,它的外国语名称geometry就是由geo(土地)与metry(测量)组成的。古埃及有专门人员负责测量事务,这些人被称为“司绳”。后来拉丁语音译为“geometria”,英文单词为Geometry,英式发音[d?i??m?tri]。已经学过英文发音的同学,可以尝试发一下音,就会发现这个单词的前两个音节和“几何”这两个字的读音很相像。也可以登录百度翻译,输入这个单词,然后点击英式发音按钮,听听这个单词的标准发音。
几何这个词是怎么来的?
中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。徐光启在翻译古希腊数学家欧几里得的著作《几何原本》时,将其音译为”几何”。像点、线、直线、平行线、曲线、角、直角、锐角、钝角、三角形、四边形等,这些在数学课本上耳熟能详的术语,都是徐光启在400年前翻译时所定下来的译名。这些译名不但在我国沿用至今,而且还传播到了朝鲜、日本等国。
徐光启要求全部译完《几何原本》,但利玛窦却认为应当适可而止。由于利玛窦的坚持,《几何原本》的后7卷的翻译推迟了200多年,才由清代数学家李善兰和英国人伟烈亚力合作完成。李善兰(1811~1882),字壬叔,号秋纫,浙江海宁人,自幼喜欢数学。1852年到上海后,李善兰与伟烈亚力相约,继续完成徐光启、利玛窦未完成的事业,合作翻译《几何原本》后7卷,并于1856年完成此项工作。至此,欧几里得的这一伟大著作第一次完整地引入中国,对中国近代数学的发展起到了重要的作用。
徐光启在评论《几何原本》时说过:“此书为益能令学理者祛其浮气,练其精心;学事者资其定法,发其巧思,故举世无一人不当学。”其大意是:读《几何原本》的好处在于能去掉浮夸之气,练就精思的习惯,会按一定的法则,培养巧妙的思考。所以全世界人人都要学习几何。
在徐光启看来,翻译只是赶超世界水平的第一步,他说“欲求超胜,必须会通,会通之先,必须翻译。”《几何原本》翻译出版之后,会通工作接踵而来。明末有孙元化的《几何用法》(1608)、李笃培的《中西数学图说》(1631)、陈荩谟的《度算解》(1640)、方中通的《数度衍》(1664)等,清初有王锡阐的《圆解》、梅文鼎的《几何摘要》、《勾股举隅》等一系列著作,这些著作都是在这种思想指导下产生的。
梁启超在《中国近300年学术史))中说:“明末有一次大公案,为中国学术史上应大笔特写者,日欧洲历算学之输入”。徐光启与利玛窦合译的《几何原本》,“字字精金美玉,为千古不朽之作”。
在徐光启之前,我国古代的数学家对几何方面也作出了卓越的贡献(只是不叫这些知识为“几何”)。比如魏晋时期(曹操及其后代建立的王朝)的山东人刘徽用“割圆术”科学地求出了圆周率π=3.1416。之后,在南北朝时期的南京人祖冲之计算出的圆周率的近似值在3.1415926和3.1415927之间。
几何的起源
几何学是数学中最古老的一门分科。最初的几何知识是从人们对形的直觉中萌发出来的。史前人大概首先是从自然界本身提取几何形式,并且在器皿制作、建筑设计及绘画装饰中加以再现。图1-1所示图片显示了早期人类的几何兴趣,不止是对圆、三角形、正方形等一系列几何形状的认识,而且还有对全等、相似、对称等几何性质的运用。
古代印度几何学的起源则与宗教实践密切相关,公元前8世纪至5世纪形成的所谓“绳法经”,就是关于祭坛与寺庙建造中的几何问题及求解法则的记载。
中国最早的数学经典《周髀算经》事实上是一部讨论西周初年天文测量中所用数学方法的著作,其中第一章叙述了西周开国时期(约公元前1000年)周公姬旦同商高的问答,讨论用矩测量的方法,得出了著名的勾股定理,并举出了“勾三、股四、弦五”的例子。
几何之父——欧几里得(Euclid,公元前325-公元前265)是古希腊数学家。欧几里得在公元前300年编写的《几何原本》闻名于世,2000多年来都被看作学习几何的标准课本,共13卷,这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍,所以他被人们称为几何之父。没有谁能够像欧几里得那样,声誉经久不衰。现在从小学至高中所学的几何知识都属于欧氏几何(欧几里得几何)范畴。
欧几里得在他留传了几千年的光辉著作《几何原本》中,用公理化方法将古希腊丰富的几何学知识整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。
欧几里得虽然算不上杰出的数学家,但确实是一位有才华的组织者。他把当时希腊人研究几何的许多证明用更简明、逻辑的语言加以阐述,并把许多有用的知识收集到他的《几何原本》一书,该书把许多世代的几何发明和创造经过加工熔为一炉,是一本具有独特风格的名著。《几何原本》写得生动而又有条理,对前人的许多研究成果作了认真的分析,并给了出色的证明,富于权威性。甚至今天中学里学习的几何课本仍是从《几何原本》改写而成的,它为人类的精神文明起了很好的作用,为数学的发展奠定了基础。
欧几里得是一位很讲究证明方法的学者。有些数学证明题比较复杂,一时难于解决,但如果精心选择证法,往往可以使难化简,作到事半功倍,甚至有些长期解决不了的难题也能一针见血地得到证明。
欧几里得天才的、完美的创造物是《几何原本》。古希腊继承了埃及和巴比伦在实验几何学上的知识,运用逻辑推理的方法把几何学的研究推到高度系统化、理论化的境界,而欧几里得正是这样一位大师。《几何原本》是整个人类文明发展史上的里程碑,是全人类文明遗产中妙用无穷的瑰宝。
《几何原本》从五个公设和五个公理入手,用逻辑推理的方法,演绎出内容极为丰富的几何知识。它叙述并证明了几千年来人类有关点、线、圆和一些简单的立体几何知识,全书共13卷。第1卷,给出了欧几里得几何学的基本概念、定义、公理、公设等;第2卷,面积和变换;第3卷,圆及其有关图形;第4卷,多边形及圆与正多边形的作图;第5、6卷,比例与相似形;第7卷,数论;第8卷,连比例;第9卷,数论;第10卷,不可通约量的理论;第11卷,立体几何;第12卷,利用“穷竭法”证明圆面积的比等于半径平方的比;球体积的比等于半径立方的比,等等;第13卷,正多面体。
《几何原本》一书从很少的几个定义、公设、公理出发,推导出大量结果,最重要的是它给出的公理体系标志着演绎数学的成熟,主导了其后数学发展的主要方向,使公理化成为现代数学的根本特征之一。
古希腊数学家泰勒斯曾经利用两三角形的等同性质,做了间接的测量工作;毕达哥拉斯学派则以勾股定理等著名。在埃及产生的几何学传到希腊,然后逐步发展起来而变为理论的数学。哲学家柏拉图(公元前429~前348)对几何学做了深奥的探讨,确立起今天几何学中的定义、公设、公理、定理等概念,而且树立了哲学与数学中的分析法与综合法的概念。此外,梅内克缪斯(约公元前340)已经有了圆锥曲线的概念。
欧几里得是一位数学教育家。对不肯刻苦钻研、有投机取巧想法的人,他是持批判态度的。据记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说:“在几何里,没有专为国王铺设的大道。”这句话后来成为千古传诵的学习箴言。
在19世纪末,德国数学家希尔伯特发表了著名的《几何基础》,希尔伯特在这本书中将几何进一步的公理化,把点、直线和平面统称为“几何元素”,而它们之间要满足五类公理(关联公理、次序公理、全合公理、平行公理、连续公理)要求,称这些几何元素的集合为“几何空间”,从而有逻辑地得到了欧几里得几何的所有定理,使得欧几里得几何成为了一个严谨,同时逻辑结构完善的几何体系。
结语
几何学的历史非常悠久,其应用也十分广泛。远到古代的弓箭和战车的制造、耕地的丈量,近到房屋的制造和装修;小到杯子的制造,大到炮弹弹道的计算、战斗机的设计,乃至天体间距离的测量;都需要用到几何学的知识。
19世纪以来,人们对于关于三角形和圆的初等综合几何,又进行了深入的研究。至今这一研究领域仍然没有到头,不少资料已引申到四面体及伴随的点、线、面、球。
射影几何学是一门讨论在把点射影到直线或平面上的时候,图形的不变性质的一门几何学。在19世纪晚期和20世纪初期,对射影几何学作了多种公设处理,并且有限射影几何也被发现。事实证明,逐渐地增添和改变公设,就能从射影几何过渡到欧几里得几何,其间经历了许多其它重要的几何学。
解析几何在近代的发展,产生了无穷维解析几何和代数几何等一些分支。普通解析几何只不过是代数几何的一部分,而代数几何的发展同抽象代数有着密切的联系。1637年,笛卡儿发表了《方法论》及其三个附录,他对解析几何的贡献,就在第三个附录《几何学》中,他提出了几种由机械运动生成的新曲线。在《平面和立体轨迹导论》中,费尔马解析地定义了许多新的曲线。在很大程度上,笛卡儿从轨迹开始,然后求它的方程;费尔马则从方程出发,然后来研究轨迹。这正是解析几何基本原则的两个相反的方面,“解析几何”的名称是以后才定下来的。
736年,欧拉发表论文,讨论哥尼斯堡七桥问题。他还提出球面三角形剖分图形顶点、边、面之间关系的欧拉公式,这可以说是拓扑学的开端。庞加莱于1895~1904年建立了拓扑学,采用代数组合的方法研究拓扑性质。拓扑学开始是几何学的一个分支,在二十世纪它得到了极大的推广。
OK,关于八年级下册数学课本和大学的数学书怎么查习题答案的内容到此结束了,希望对大家有所帮助。